Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
2.
Nat Commun ; 12(1): 1936, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1387331

RESUMEN

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Sitios de Unión , COVID-19/virología , Dimerización , Simulación de Dinámica Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformación Proteica , Dominios Proteicos
3.
Elife ; 102021 04 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1200330

RESUMEN

Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.


Asunto(s)
COVID-19/patología , Células Gigantes/patología , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Internalización del Virus , Células A549 , Enzima Convertidora de Angiotensina 2/metabolismo , Colesterol , Técnicas de Cocultivo , Humanos , Pulmón/patología , Fusión de Membrana , Lípidos de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA